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A dynamical system consisting of a subsystem having the variables z = (q, p) 
and of another dynamical system (thermostat) is considered in the nonquantum 
case. Using a dynamical equation, it is shown that the linear and quadratic non- 
Markov fluctuation-dissipation relations (FDRs) of the first kind are valid in 
the first nonvanishing approximation in interaction constants. Applying these 
FDRs, one can determine the statistical properties of the fluctuations when the 
form of the nonlinear phenomenological equation is known. The non-Markov 
FDRs of the first kind are the direct generalization (to the inertial case) of the 
Markov FDRs that are the consequence of detailed balance. 

KEY WORDS: Nonlinear systems with after-effect; fluctuation-dissipation 
theorem; reciprocal relations; interaction of dynamical systems; contact with 
thermostat. 

1. I N T R O D U C T I O N  

In his r emarkab l e  works  ~1) N . G .  van K a m p e n  first fo rmula ted  the con- 
di t ions  of deta i led  ba lance  for the F o k k e r - P l a n k  equat ion.  As is well 
known,  deta i led  ba lance  is cond i t ioned  by the t ime reversibi l i ty  of the 
physical  microprocesses ,  or, s tr ict ly speaking,  by invar iance  of the 
equat ions  descr ib ing  these microprocesses  with respect  to the t ransfor-  
ma t ion  t ~ - t .  Based  on van K a m p e n ' s  work  (2) (see also ref. 3, 
pp. 160-165), the Onsage r  re la t ions  and  the M a r k o v  f luc tua t ion-d iss ipa t ion  
theorem can be der ived f rom deta i led  balance.  

M o r e  than  10 years  la ter  I pub l i shed  work  tha t  m a y  be regarded  as a 
deve lopmen t  and  genera l i za t ion  of van  K a m p e n ' s  ideas  to the case of  the 
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arbitrary (not only the Fokker-Planck)  stationary Markov process of the 
nonlinear theory. 

The concept of detailed balance also relates to the case of the arbitrary 
Markov process. If the basic equation is written as 

[~(z) =- I L=,p(z') dz' (1.1) 

then the detailed balance takes the form 

Lz~,po(z') = L~,,=po(z) (1.2) 

where po(z) is the stationary probability density and e~= +1 are time 
signatures (z~ goes into ~z~ when the transformation t-~ - t  is made). 

Equation (1.1) can be written in the form of the Kramers-Moyal  
expansion 

Z ! 
n = 1 :q ,.,.,~, " " " " 0~n ! 

X 3Z~, ""  3Z~, [K~, ..... (z) p(z)]  (1.3) 

Here the summation over repeated subscripts is understood. It is expedient 
to introduce the images 

K~ ..... (z) exp(# -  lz~x~) po(z) dz 
~c~l ..... (x) ~ ~ exp(#-lz~x~) po(z) dz (1.4) 

of the functions K~, ..... . For  the moment the parameter # is arbitrary. In 
addition we denote 

l ~  . . . . . .  ~ ~ "  L S X ~ ' " S x ~ , . l ~ = o  
(1.5) 

In refs. 4 and 5 it has been shown that the detailed balance implies the 
exact linear and quadratic fluctuation-dissipation relations (FDRs) 

1~,~ = e~l~,~ 

l~  = -#(l~,~ +/~,~) (1.6) 
l ~  = i f 2 ( 1  - e~et~er)(l~,p~ + l~,~,/ + l~,~) 

l~,~ = #(~e~e~l,/,~ -- l~,~ - -  l~,~) 
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The first of these relations is the Onsager relation and the second is the 
linear Markov fluctuation-dissipation theorem. The third and fourth 
relations are quadratic FDRs. The cubic FDRs having the form 

CcLfl,~g = s 1 6 3  6 C~,&~ B 

l~,a = #3(1 + e~g~eTea)(c~./a + c~.~,~a + c~7,~a - l~,~a 

- -  l ~ , ~  - -  l . / ,~/~a - 1 6 , ~ B ~ )  

1.b'7,6 = k/2(/~,flT6 -}- l~,~ra + l~,~a + e=eee-eeala,=~7 

- -  Ccq6,ya - -  C~y,,~,5 - -  Cfl;, c~a) 

(1.7) 

where 

- I  (1.8) 

were also derived in these works. 
In many physical problems the stationary probability contains some 

:small parameter # as follows: 

po(z) = const,  exp[ - cp(z)/kt] (1.9) 

As an example, one can take the well-known equilibrium probability 
densities 

po(z) = const �9 exp [ - F(z)/kT] 

po(z) = const �9 exp [S(z)/k] 

po(z) = const �9 exp [ - E(z)/k T] 

(1.1o) 

where F(z) is the free energy, S(z) is the entropy, and E(z) is the energy. In 
the fist case (p(z)= F(z), # = kT; in the second case (p(z)= -S(z) ,  tl = k ;  
etc. The smallness of # is provided by the smallness (from the macroscopic 
point of view) of the Boltzmann constant. Identifying the parameter kt in 
(1.4) with the small parameter/~ in (1.9), we easily obtain that in the case 
(1.9), Eqs. (1.4) imply the asymptotic equations 

~c~ 1 . . . . .  ( x )  ~ & ,  . . . . .  ( z ( x )  ) (1.11) 

where the dependence z(x) is the inverse of the dependence 

x~ = Ocp(z)/~z~ (1.12) 
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Thus, x~ can be interpreted as "forces" conjugate to z~. From (1.11) it 
follows that 

where 

l ~  = K~,(z(0)), I~,~ = K~ ~ ( ~ ] 
' k~X~/~=o 

l~., = K~,~ ( ~?z ~ ~ 
\~x~/~=o 

(1.13) 

[ ~ ..... ] (1.14) 
K~I ...... ~'"~m t_~?Z~ ~...0z~mJx=0 

Of course, when we use Eqs. (1.13), the FDRs (1.6) and (1.7) become 
asymptotic. 

The Markov FDRs (1.6) and (1.7) can be generalized to the non- 
Markov case. (5) Suppose that the stochastic equation can contain inertia 
and that this equation is nonlinear, i.e., 

f ,,, 2~(t) = - 4~,~(t, t') x~(z(t')) d t ' - -~  4~,~(t; t', ) 

x x~(z(t")) x~(z(t")) clt' d t " -  . . . .  ~:(t) (1.15) 

where the dependence x(z) is determined by formula (1.12) [if Eq. (1.9) is 
validJ, and the noise ~:(t) ( ( ~ ) = 0 )  is a functional of innovation noises 
~ ( t )  and of x(z(t)): 

(~(t) = F~,[((t'), x(z(t '))] (1.16) 

It is convenient to write (1.15) in the shorter form 

1 
Z1 = - -1~1,2X2 - -  ~ l ~ l , 2 3 X 2 X 3  . . . . .  ~1 (1.17) 

Here the subscripts 1, 2 ..... denote the pairs (a~, tl), (a2, t2) ..... and the sum- 
mation (and the integration with respect to time) over repeated subscripts 
is understood. 

For the above case the linear FDRs have the form 

(J~) 12 ~" ( ~ 1  ~2)x--=O = ~ / (41 ,2  -~- 4 2 , 1 )  ( 1 . 1 8 a )  

4 t'~ = 42,1 (1.18b) 1,2 

where t.c. denotes the time conjugation operation defined by 

[-f=i . . . . .  ( t l  ..... /n ) ' ]  t'c" = ~ 1  ""g=, f* ( - - t  I ..... --in) ( 1 . 1 9 )  
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The quadratic non-Markov FDRs have the form 

(/1123 2 t.c. t.c. t.c. ~----1"/ ((/)1,23 - -  ~1,23 + (J02,13 - -  ~2,13 + (/)3,21 - -  (~3,21) 

~12,3 = ]- / (~ 1,23 -~ (/)2,13 - -  +~,c12) 

Here 

(1.20) 

(/)123 ~--" ( ~ 1 ~ 2 ~ 3 ) x ~ 0  (1.21) 

and ~12,3 is determined by the expansion 

(F ,  Ef, x],  F2[f, x]  )x = ~i2 + ~12,3X3 "{- " ' "  
(1.22) 

where (a, b )  = (ab )  - ( a ) ( b } .  In Eq. (1.22) the function x(t) is assumed 
not as a random function, but as an argument function, i.e., it is fixed. In 
ref. 5, the FDRs (1.18) and (1.20) were called FDRs of the first kind. In 
addition, linear and nonlinear FDRs of other kinds are also valid. Here 
we will prove the validity of the FDRs (1.18) and (1.20) for a model in 
which z= are the coordinates of a dynamical subsystem interacting with a 
thermostat. 

2. THE DERIVATION OF THE S T O C H A S T I C  EQUATION FOR 
THE C O O R D I N A T E S  OF THE D Y N A M I C A L  S U B S Y S T E M  

We suppose that the subsystem has the Hamiltonian Hi(q, p), and the 
thermostat has the Hamiltonian H2(Q,P ). Denoting z = ( q , p )  and 
Y = ( Q , P )  and choosing the interaction Hamiltonian in the form 
IV= -Y~= 2=z~ Y,=, we have the total Hamiltonian 

H(z, Y) = H~(z) + Hz( Y ) -- ~ 2:z: Y,,, (2.1) 
~x 

Substituting (2.1) into the dynamical equation 

we get 

~ = -{z=,  H} (2.2) 

0H1 + 
2= = - {z~, z~} --~-z~ {z~,ze}2~Y~ (2.3) 

(the summation over fl is understood). Here we have used the equation 

c~H1 (2.4) {z=, Hi(z)} : {z=, z~} 0z~ 
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whose validity can be verified by using the expansion of the Hamiltonian 
H~ into its Taylor series. In Eqs. (2.3) and (2.4) the braces {...} denote the 
Poisson bracket that is the classical limit of the quantum Poisson bracket: 

i 
{F, G} = ~irn0 ~ IF, G], IF, G] = F G - G F  (2.5) 

By strength of (2.1), from the total Gibbs distribution p0(z, Y)=cons t -  
e x p [ - H ( z ,  Y)/kT] we get, for small 2 = {2~ }, the equilibrium probability 
density for the coordinates of the subsystem 

po(z) = const,  exp [ - Hl(z)/kT ] (2.6) 

Comparing (2.6) with (1.9), we see that in this case q)(z)=H~(z), #=kT,  
and formula (1.12) assumes the form 

Also denoting for brevity 

we rewrite (2.3) in the form 

Xc~ = aHl(Z) /azc~ (2.7) 

c~  = {z~, z~} (2.8) 

~ = -c~,x ,  + c~2/3 Ynt~ (2.9) 

The coordinates of theermostat Y,, appearing in (2.9) are functionals of 
x(t). The behavior of the thermostat with the interaction Hamiltonian 
-~2~ 2~z~ Yn~ can be identified with the behavior of the thermostat with the 
Hamiltonian 

H(Y) = H2(Y) - ~ f~ Y,~ (2.10) 

if we letf~ = 2~z~. Let us expand Y,~ into the functional Taylor series i n f ,  

Y,~(tl) = [- Y,~(tl)]f=_o + f [g) Y,,(t,)/6f~(t2)]f=_of~(t2) dt2 

1 
+ 5 f [62 Y.,(tl )/6fB(t2) 6f~(t3)]1_--o 

x f~(tz) fr(t3) dtz dt3 + ... (2.11) 

Taking into consideration the formula 

6F(t) 
6ftj(tl------~= {F(t), Y,~(tl) } r / ( t -  t~) (2.12) 
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[2/1(z) = 1 + sign ~], which is valid (for {F, Y} = (i/h)[F, r ] ) i n  the quan- 
tum case and also in the classical limit, we can obtain that the functional 
derivatives in (2.11) are expressed by the repeated Poisson brackets (or 
commutators){6) 

[6Yn~(tl)/afe(t2)]f=_o ~ v~/~(tl, t2) = { Y~ Y~ n~ 

af/~(t2) af~(t3)[o -= v~H7(tl' t2 '  t3) 

= {{Y~ (t,), Y~ r~ 

+ {{Y~ Y~ Y~ (2.13) 

where yO yO = [ If_--0,/112=/1(tl - t2), and /7,23 =~,2/123. Considering 
Eqs. (2.11) and (2.13) and the equation f~=2~z~,  we reduce (2.9) to the 
form 

= +c~)~l~Y~ v~(t l ,  2~ ~( t l )  - c ~ x ~  ~ f t2) 

1 
x zr(t2) dt2 + ~ c~B2/~ f v~6(tl, t2, t3) 

x 2726z~(t2) z6(t3) dtz dt 3 + ... (2.14 ) 

The thermostat variables yO appearing in (2.14) fluctuate according to the 
][aw of thermal equilibrium. They can be regarded as innovation external 
random forces acting on the subsystem, i.e., Eq. (2.14) is the stochastic 
equation obtained in ref. 8. 

3. P R O O F  OF L INEAR R E L A T I O N S  

Equation (2.14) is the specific form of Eq. (1.15). It remains to express 
z in terms of the forces x. In the linear approximation the terms nonlinear 
in x should be omitted. In addition, in the term linear in x the random 
function t) /~(tl ,  t2) should be replaced by its mean value ( v~( t , ,  t2)) since 
(v - ( v ) )  z relates to the nonlinear approximation. Denoting P2 = O/~t2, we 
have 

(v~( t l ,  tz)F )o.~z~(t2) 

= (v~(t , ,  t2)) ,~.,(1/p2) ~(t:)  

= (v~( t l ,  t2)) 27(1/p2)~-c~6x6(t2) + c~626 Y~ + (9(22)] (3.1) 
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[-Eq. (2.14) is used]. Analogous transformations of the other terms can be 
performed. By virtue of (2.13) we get 

(V/~y(tl, t2 ) )  = Ul~y(tl, t2) ~12 (3.2) 

where 

Ufl,~(tl, t2) = < { Y~ Yn~ > 

Taking into account all that has been said above, we can write (2.14) in the 
form 

Z1 = --C12x2 -- C13A34 U45t145A56C62(1/P2) x2 . . . . .  ~1 (3.3) 

where 

C12 = e~l~26(tl - t2) (3.4a) 

A12 = ) ~ 1 6 ~ 2 6 ( t l  - t2) (3.4b) 

~1 = - C l 2 A 2 3  Y3 ~ + (-9(~3) (3.4c) 

Comparing (3.3) with (1.15) gives 

~1,2 = C12 -~- C13134 U45t]45A56C62(l/p2) + (~(24) (3.5) 

In this case the linear FDR (1.18a) reads 

~12 = kT((/) 1,2 "~- ~2,1) (3.6) 

where q~12= (r Using (3.4c) yields 

(/)12 = - -C13A34(  Y~ yo)  A56 C62 + (~(~4) (3.7) 

(we have used that C26= -C62). The moment ( o o Y4 Ys) is the equilibrium 
one, since the thermostat is in thermal equilibrium. It is known (see, for 
example, ref. 5, w that for equilibrium the moment formula 

( Y o 4 Y o ) _  E(p4) ( [ y o ,  y o ] )  (3.8) 
E(p4) -  1 

is valid in the quantum case, where E ( p ) = e x p ( i h p / k T ) .  Passing to the 
classical limit, we thus obtain 

( y40 y o  ) .~_ -- k r  U45 = k r  U45 (3.9) 
P4 P5 
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Considering ?]45 -~-//54 = 1, we can write formula (3.9) in the form 

( y4 o ys  o ) = k___T U45/745 - - k r  U45/154 
P5 P4 

= _kTU45t145 L _ kTU54r154 L (3.10) 
P5 P4 

since U54 = -U45,  P51Uns=U45(P51) T= -U45p51. Substituting (3.10) 
into (3.7) gives 

qSl2=kT( CI3A34U45r145156C62 1 -~1) - -  zr" C26A65 U54q54A43 C31 (3.11) 
P2 

It is easy to verify that (3.11) is equal to the expression obtained by sub- 
stituting (3.5) into the right-hand side of (3.6). Thus, the FDR (3.6) has 
been proved. In order to prove the second linear relation--reciprocal 
relation (1.18b)--one should take into consideration the equation 

( y o y o . . ,  yo)t.c. = ( y o y o . . ,  y o  ) (3.12) 

which is satisfied [under the time-reversibility condition 
H2(Q, - P ) =  H2(Q, P)]  by any equilibrium moment in the quantum case 
and also in the nonquantum case (see ref. 7 and also ref. 5). Equation (3.12) 
:implies 

( [ y o ,  yo])t.c.__ ( j r  o, y o ] )  (3.13) 

,(the quantum case). Further, we have 

T �9 i < I t  o,ro]> ~176 

i.e., the equation 
( { y 0 ,  yo} )t.o.= _ ( { y o ,  yo}}  (3.14) 

is valid in the nonquantum case. Applying Eqs. (3.5) and (3.14) and the 
equations q~~ = q21, (p21) tc '= - p 2  1, and 6(t 1 - te)t~ = 5(t I - t2), we find 

. . . .  
1,2 -- E1 C12e2 -]- 81CI3~3A34(U45~45) t'c" A56~]6 C62,~2 - 

1 
= C21 21- C31134 ( -  U45) t]54A56C26 - -  

Pl 
1 

= C21 -/- C26A65 U54q54A43 C31 - -  
Pl 

= ~2,1 (3.15) 

since e~ c~  % = c~ and U4s = - U54. Equation (3.15) testifies to the validity 
of relation (1.18a) in the linear approximation. 

822/53/1-2-2 
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4. Q U A D R A T I C  FDRs 

In Eq. (2.14) let us consider the term quadratic in z. In this term, in 
the quadratic approximation, we can replace v123 by 

(/)123) = e123q123 -[- U1327]132 

where U123 = ( { { yo,  yo}, yo} ) [Eq. (2.13) has been used]. Transforming 
this term according to (3.1) and comparing the result with the appropriate 
term in (1.15), we get 

1 
(J~1,23 ~-- -C14A45(U5671~567 -1- U576/7576) A68A79C82C93 (4.1) 

P6P7 

Let us write this expression in the shorter form and perform some transfor- 
mations 

1 
~Pl,23 = -CIAI(UI23r]123 Jr- e132q132) A z A 3 C 2 C 3  

P2P3 

1 
- - C  1 C T C f f A 1 A T A T p 2 P 3  (U123F]123 -}- U13271132) 

1 
= - C 1 C 2 C 3 A I A 2 A  3 (U123~123 "~ U132q132) (4.2) 

P2P3 

We now find the time-conjugate function. In so doing, we use that (3.12) 
implies the formula 

( [ [ y o ,  yo],  yo]}t.c, yo , = < [ [  Y~ 2], go ]>  (4.3) 

analogous with (3.13), and therefore 

t,C. e l23  = U123 (4.4) 

Using the equations qt.c. 123 = q321, eCe = - C ,  and pt.C. = --P2, from (4.2) we 
get 

1 
(i0]',c23 = --gl Cle lg ,2C2e2e3C3g3AIA2A3  - -  (U123q321 + U132q231) 

P]P3 

1 
= C 1 C 2 C 3 A 1 A 2 A  3 (U123r/321 -{- U13271231) (4.5) 

PaP3 

Now consider the triple moment 

(~123 ~ (~1 ~2 ~3) = -C1C2C3A1A2A3( Yl~ Y2~ Y3~ ) (4.6) 
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From the formula (ref. 5, w 

(YOiYOyO3} - E(p~) ( 1 
E ~ ) - I  E(p~-)-I ( [ [ y 0 ,  yo], Y3O]} 

+ E(pz)E(P2)- 1 ( [ [  y0, yo], y 0 ] ) )  (4.7) 

which is valid for equilibrium moments in the quantum case, we obtain in 
1Lhe classical limit 

( ;  1 ) 
o o o _(kT)2 U123_] - U132 ( Y 1 Y 2 Y 3 ) =  Pl 3 PiP2 (4.8) 

Therefore Eq. (4.6) takes the form 

To prove the relation 

(4.9) 

(kT) -2  (~123 = (~1,23 (~)t.c. t.c. t.c. (4.10) - -  1,23 -~- (P2,13 - -  (~2,13 -~- ~3,12 - -  ~3,12 

we substitute (4.2) and (4.5) into the right-hand side of (4.10). This gives 

~1,23 -~ (~)2,13 -~ (P3,12 - -  t .c .  

= C1C2C3A1A2A3 

N UI23(?]123 -[- ?]321) -[- 
P2P3 

U132(?]132 -]- ?]231) 

1 1 
-~- - -  U231(~213 + ~312) -t- U231(q231 + ~132) 

PIP3 P iP3  

1 1 ] 
-t- - -  U312(?]312 -~ ?]']213) -~ U321(?]321 -Jc ?]123) ( 4 . 1 1 )  

PiP2 PIP2 

Due to the property Ukl m ~ - - - U l k  m of the Poisson brackets, from six 
fianctions obtained by permutation of the subscripts of U123 we obtain three 
independent functions, and due to the Jacobi identity 

U123 -~ U231 --~ g312 = 0 (4.12) 

two independent functions remain. We take the functions appearing on the 
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right-hand side of (4.9) as these independent functions. Passing to them in 
Eq. (4.11 ) gives 

41,23 Jr- 1~2,13 + tJD3,12 - -  t.c. 

= C 1 C 2 C 3 A x A 2 A  3 

' ] 
-[- (/']21331-/1312-[-/1231-4-/1132) U123 

PiP3 

71- (/1312 -1- /1213 -1"- /1321 "l- /1123) U132 
PiP2 

(4.13) 

By virtue of the equation 

+ fktm = 0 (4.14) 
PlP3 P 3 

[which is valid in the stationary case when (Pl + P2 + P3)fkb,, = 0] and by 
virtue of the obvious formula 

q123 dr /1321 -~-/1213 -~ /1312 + /1231 -~- V/132 = I (4.15) 

the expression on the right-hand side of (4.13) coincides with the 
expression on the right-hand side of (4.9), which proves the FDR (4.10). 

We now pass to the other relation in (1.20), i.e., to the FDR 

( kT)  -1 1~12,3 = 1~l,23 -4- (P2,13 - -  I~t'c" 3,12 (4.16) 

In proving this FDR, one should take into account the distinction between 
v~2 and its mean value (v~2). Regarding the difference v 1 2 - ( v ~ 2 )  as a 
random force 41, from (2.14) we obtain (with appropriate accuracy) (1.15) 
if we now put 

~l = F l [  Y~ x]  

= _ C I A 1  y o +  CIAl(v13_ (v13))lA3Csx3 
P3 

(4.17) 
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which is more precise than (3.4c). Substituting (4.17) into (1.22) yields 

@12,3 = -C~CzA~A2((v13,  Y ~  (/)23, Y~ 1-  A3C3 
P3 

1 
=_C1C2C3A,A2A3__( ( / )13 ,  y o ) +  (v23 ' y o ) )  (4.18) 

P3 

In the equilibrium case a formula of the type (3.9) is valid for any moments 
and cumulants. Therefore we have 

(/)13, y20) =--kT ({/)13 , Y2~ (4.19) 
P2 

or 

(/)13, y 0 )  = _ _ k T < { { y o  yo}  ?]13, y20}) =__krU1327]13 
P2 P2 

(4.20) 

if we use (2.13). Due to this, Eq. (4.18) assumes the form 

(kT)_ lq~23  _ C a C 2 C 3 A ~ A 2 A 3 (  1 1 ) = ?]13 U132 --t- ?]23 U231 
' P2P3 PIP3 

(4.21) 

Substituting (4.2) and (4.5) into the right-hand side of (4.16) gives 

~1,23 + ~2,13 - ~,~i2 

= - C  1C2C3A1A2A3 

1 1 1 
)< ?] 123 U123 "~ - - ?] 132 U132 "+ - ?]213 U213 

P2P3 P2P3 PiP3 

1 1 1 \ 
-~- ?]231 U231 -~- ' ' ?]213 U312 -'~ ?] 123 U321) (4.22) 

PiP3 PiP2 PiP2 

losing the above-mentioned properties of the function U123, in (4.22) we 
perform the transformations such that the functions U~32 and U231 appear 
in the right-hand side of (4.22). This gives 

(P 1,23 "t- ~2,13 -- I~',c12 

- -  C1C2C3A1A2A3 

X (?]123 + ~132) -- -'[- ~213 U132 
P2P3 PiP3 PiP2 

+ I P ,  lp3 (?]213"+-?]23')--(P@P3-I-pllp2)q123] U231} (4.23) 
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Using (4.14) and the obvious equation 

r/123 + r/132 + r/2~3 = q~3 (4.24) 

we easily verify that the expression on the right-hand side of (4.23) is equal 
to the expression on the right-hand side of (4.21). This proves the FDR 
(4.16). 

The foregoing proof may have left the impression that the linear and 
quadratic FDRs are valid only when the inertial terms in (1.15) are small 
(which is connected with the smallness of )~). However, this is not so, since 
using the other methods of proof does not require this smallness. In ref. 5 
the linear FDRs are proved by the projection operator method in phase 
space. The smallness of inertial terms is not assumed in this case. Other 
methods (nondynamical ones) of proving the linear and nonlinear FDRs of 
the first kind are also applied in ref. 5. 
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