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Derivation of the Linear and Nonlinear Non-Markov
Fluctuation-Dissipation Relations of the First Kind for
a Dynamical Model
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A dynamical system consisting of a subsystem having the variables z= (g, p)
and of another dynamical system (thermostat) is considered in the nonquantum
case. Using a dynamical equation, it is shown that the linear and quadratic non-
Markov fluctuation-dissipation relations (FDRs) of the first kind are valid in
the first nonvanishing approximation in interaction constants. Applying these
FDRs, one can determine the statistical properties of the fluctuations when the
form of the nonlinear phenomenological equation is known. The non-Markov
FDRs of the first kind are the direct generalization (to the inertial case) of the
Markov FDRs that are the consequence of detailed balance.

KEY WORDS: Nonlincar systems with after-effect; fluctuation-dissipation
theorem; reciprocal relations; interaction of dynamical systems; contact with
thermostat.

1. INTRODUCTION

In his remarkable works”) N.G. van Kampen first formulated the con-
ditions of detailed balance for the Fokker-Plank equation. As is well
known, detailed balance is conditioned by the time reversibility of the
physical microprocesses, or, strictly speaking, by invariance of the
equations describing these microprocesses with respect to the transfor-
mation ¢— —z. Based on van Kampen’s work® (see also ref 3,
pp. 160-165), the Onsager relations and the Markov fluctuation-dissipation
theorem can be derived from detailed balance.

More than 10 years later I published work that may be regarded as a
development and generalization of van Kampen’s ideas to the case of the
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arbitrary (not only the Fokker—Planck) stationary Markov process of the
nonlinear theory.

The concept of detailed balance also relates to the case of the arbitrary
Markov process. If the basic equation is written as

p(2)= | Looplz) d (L1)

then the detailed balance takes the form
Lzz’pO(Zl)zLez’,SZPO(Z) (12)

where py(z) is the stationary probability density and &, = +1 are time
signatures (z, goes into &z, when the transformation ¢ — —¢ is made).

Equation (1.1) can be written in the form of the Kramers-Moyal
expansion

)= 3 ; MGl

n=1 21,.., ﬂ'

X [Kuy o (2) p(2)] (13)

-0z,

Here the summation over repeated subscripts is understood. It is expedient
to introduce the images
[ Koy o2 explu™'2,x,) pol2) dz

Texp(i T2.m,) pol2) d (14)

Koy oa,(X) =

of the functions K, .., . For the moment the parameter 4 is arbitrary. In
addition we denote

l [0 ) s
arcan B B T 5*’31“'51’/1,,, o :

In refs. 4 and 5 it has been shown that the detailed balance implies the
exact linear and quadratic fluctuation-dissipation relations (FDRs)

lﬂ,cx 28118[31!!,[3
lo:ﬁ = _:u(loz,ﬂ + lﬂ,zz)
Lugy = P~ €288 W lupy + lp oy + Ly o)

lapy = Me,8p8, 0L, 05— 5, — Ig.ay)

(1.6)
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The first of these relations is the Onsager relation and the second is the
linear Markov fluctuation-dissipation theorem. The third and fourth
relations are quadratic FDRs. The cubic FDRs having the form

Copys = ExEp,85C15 5
Lupus = w4+ €2856,85)(Caprs + Copps T Cppas — lapyo

~ L5 = Lyaps — s.apy) (1.7)
Lipy.s = W Lapys + Lpays + Lyaps + Eafp,85 15,25,

- Coc/f,yé - Cay,ﬁé - Cﬂy,aé)

where
Caﬁ,yé =HU h 11&&76 + [oz,ﬁyé + Zﬂ,zvd {18)

were also derived in these works.
In many physical problems the stationary probability contains some
small parameter u as follows:

polz) = const -exp[ — ¢(z)/1] (1.9)

As an example, one can take the well-known equilibrium probability
densities

polz)=const -exp[ — F(z)/kT]

polz)=const -exp[.S(z)/k] (1.10)

polz)=const -exp[ — E(2)/kT]
where F(z) is the free energy, S(z) is the entropy, and E£(z) is the energy. In
the fist case @(z)= F(z), u=kT; in the second case ¢(z)= ~S(z), u=k;
etc. The smallness of p is provided by the smallness (from the macroscopic
point of view) of the Boltzmann constant. Identifying the parameter y in

(1.4) with the small parameter p in (1.9), we easily obtain that in the case
(1.9), Egs. (1.4) imply the asymptotic equations

Koy (X)X Ky, (2(X)) (1.11)

where the dependence z(x) is the inverse of the dependence

x,=00p(z)/0z, (1.12)
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Thus, x, can be interpreted as “forces” conjugate to z,. From (1.11) it
follows that

Oz,
loc[} = Kaﬂ(z(o))a lu,ﬂ = sz,y (a_x/'>
B/ x=0

(1.13)
0z
Lapy = Kupy(2(0)), lugy=Kaps ox, ). _o
v/ x=
where
"K, .
Kﬂcl-»»an,m.,-ﬂm:[:——l——n:l (114)
azﬁl'”azﬁm =0

Of course, when we use Egs. (1.13), the FDRs (1.6) and (1.7) become
asymptotic.

The Markov FDRs (1.6) and (1.7) can be generalized to the non-
Markov case.”®) Suppose that the stochastic equation can contain inertia
and that this equation is nonlinear, i.e.,

2(0)= =] D0, 1) xp(z(r)) —% [[ @t 1)
X xp(2()) X, () Al dt” — - —E,(1) (1.15)

where the dependence x(z) is determined by formula (1.12) [if Eq. (1.9) is
valid], and the noise &,(¢) ({(&,> =0} is a functional of innovation noises
{,(t) and of x(z(1)):

& (1) = F [L(t), x(z(2'))] (1.16)
It is convenient to write (1.15) in the shorter form
= -—(151,2x2—%<151’23x2x3— =& (1.17)

Here the subscripts 1, 2,..., denote the pairs («, ,), (22, t5),.., and the sum-
mation (and the integration with respect to time) over repeated subscripts
is understood.

For the above case the linear FDRs have the form

D, =<8180,20=u(Pio+Dy,) (1.18a)
DS=0,, (1.18b)

where t.c. denotes the time conjugation operation defined by

[falz--a,,(tlr“a tn)]t'c'zgrxl "'Sa,,f*(_'tls"') '—tn) (119)
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The quadratic non-Markov FDRs have the form

Dy = .‘12(¢1,23 - djlf,cz's + D5 — dj;fia + D35 — @5’31)

(1.20)
Doy =D+ Dy 15— DY)
Here
Pi3=<8182830x=0 (1.21)
and &, is determined by the expansion
CFLx), Bl x)0 =P+ Prasxs+ - {1.22)

where {a, b)>=<ab) — {a){b). In Eq. (1.22) the function x(¢) is assumed
not as a random function, but as an argument function, ie., it is fixed. In
ref. 5, the FDRs (1.18) and (1.20) were called FDRs of the first kind. In
addition, linear and nonlinear FDRs of other kinds are also valid. Here
we will prove the validity of the FDRs (1.18) and (1.20) for a model in
which z, are the coordinates of a dynamical subsystem interacting with a
thermostat.

2. THE DERIVATION OF THE STOCHASTIC EQUATION FOR
THE COORDINATES OF THE DYNAMICAL SUBSYSTEM

We suppose that the subsystem has the Hamiitonian H (g, p), and the

thermostat has the Hamiltonian H,(Q, P). Denoting z=(q, p) and

=(Q, P) and choosing the interaction Hamiltonian in the form
V=-3,2,2,Y,, we have the total Hamiltonian

H(27 Y)= ( +H2 Zl n, (21)
Substituting {2.1) into the dynamical equation
Z,= —{z,, H} (2.2)
we get
oH .
= —{z(,,zﬂ}?—br (Za0 25} Ag Y (2.3)
2

(the summation over f is understood). Here we have used the equation

OH ,
{z., Hi(2)) = {z“,zﬂ} ! (2.4)
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whose validity can be verified by using the expansion of the Hamiltonian
H, into its Taylor series. In Egs. (2.3) and (2.4) the braces {---} denote the
Poisson bracket that is the classical limit of the quantum Poisson bracket:

(£, G} = lim % [F,G], [F,G]l=FG—GF (2.5)
-0

By strength of (2.1), from the total Gibbs distribution py(z, ¥)=const -
exp[ — H(z, Y)/kT] we get, for small 1= {4,}, the equilibrium probability
density for the coordinates of the subsystem

polz)=const-exp[ — H,(z)/kT] (2.6)

Comparing (2.6) with (1.9), we see that in this case ¢(z)=H(z), u=kT,
and formula (1.12) assumes the form

x,=0H,(z)/0z, (2.7)
Also denoting for brevity
Cop=1{24> 24} (2.8)
we rewrite (2.3) in the form
Z.oc: _C&ﬂx‘g+caﬁiﬁ Yn/{ (2_9)

The coordinates of theermostat Y, appearing in (29) are functionals of
x(¢). The behavior of the thermostat with the interaction Hamiltonian
— 2 422, Y, can be identified with the behavior of the thermostat with the
Hamiltonian

H(Y)=H\(Y) -} f.Y,, (2.10)

A,

if we let f, = 4,z,. Let us expand Y, _into the functional Taylor series in f,:

Y, (t)= [Ynu(tl):]fzo_i'f [0Y, (2,)/6f5(t2)] =0 fa(t2) dt,

1
+5 | 1Y (00)/3f(82) (1)1 =0

x fgty) f(ts) dtydts + - (2.11)
Taking into consideration the formula

OF(1)
ofp(1,)

={F(1), Y, (t,)} n(t —1t,) (2.12)
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[24(7) =1 +sign 7], which is valid (for {F, Y} = (i/h)[F, Y]) in the quan-
tum case and also in the classical limit, we can obtain that the functional
derivatives in (2.11) are expressed by the repeated Poisson brackets (or
commutators)'®’

[0Y, (11)/0fp(£2)] o0 = vaplty, t2) = {YS,(H), Yﬁ,,(lz)} iz
0¥, (1))
[m(zz) mml =tapll fo by
= {{Y(n),(tl)a Ygﬂ(tz)}a Yg.,(ts)} f123

+ {¥0.(1), YB.,(Z3)}, Ygﬁ(tz)} Mz (2.13)
where Y°=[Y°],_o,n=n(t;—1,), and #5,3=",1. Considering
Egs. (2.11) and (2.13) and the equation f,=4,z,, we reduce (2.9) to the
form

Z.a(tl) = —Co(ﬂ.x,‘ﬁ“*‘ Cotﬁ}"ﬁ Ygﬂ(tl) + Caﬂlﬂ J Uﬂy(’l? tz) }"7'

1
x z,(t,) dt, + 3 Caphp j vg,alts, 12, 13)

X h,Rsz,(13) Z5(13) dty dty + --- (2.14)

The thermostat variables Y° appearing in (2.14) fluctuate according to the
law of thermal equilibrium. They can be regarded as innovation external
random forces acting on the subsystem, ie., Eq.(2.14) is the stochastic
equation obtained in ref. 8.

3. PROOF OF LINEAR RELATIONS

Equation (2.14) is the specific form of Eq. (1.15). It remains to express
z in terms of the forces x. In the linear approximation the terms nonlinear
in x should be omitted. In addition, in the term linear in x the random
function v, (t,, t,) should be replaced by its mean value {vg,(t;, t,)) since
(v— {v)) z relates to the nonlinear approximation. Denoting p, = §/0t,, we
have

og (1, 13) ) 4,2,(85)
= (v (t1, 1) > 4,(1/p,) 2,(2)
= vg(ty, t3) ) A, (1/py)[ =, 5x5(ts) + ¢ 545 Ygﬁ(lz) +0(3%)] (3.1)
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[Eq. (2.14) is used]. Analogous transformations of the other terms can be
performed. By virtue of (2.13) we get

Cug,(ty, 12) ) =Upgy(ty, 12) 12 (3.2)
where
Up,(t1, 1) = {Y (1), Y3 (1)}

Taking into account all that has been said above, we can write (2.14) in the
form

21= —Cpxy~ Ci3 A3, Ussas Asg Cor(1/p) X3 — -+ — &4 (3.3)
where
Cl2= oy 011 — 1) (3.4a)
A12=Za15m1125(tl —1,) (3.4b)
¢ =—Cppdy Y§+(9(i3) (3.4c)

Comparing (3.3) with (1.15) gives
@, =Cy+ C3 A3 Ugstys Ass Cox(1/p2) + O(2F) (3.5)

In this case the linear FDR (1.18a) reads
D, =kT(P,+Dy,) (3.6)
where @, = (&,¢,>. Using (3.4¢) yields
D= ~C343,{ YY) A56Co, + O(4*) (3.7)
(we have used that C,= —Cs,). The moment (Y$Y?> is the equilibrium

one, since the thermostat is in thermal equilibrium. It is known (see, for
example, ref. 5, §16) that for equilibrium the moment formula

(revgy =2 B (rye ¥y (8)

is valid in the quantum case, where E(p)=-exp(ifip/kT). Passing to the
classical limit, we thus obtain

kT kT
<Y2 Y(5)>= —;’ U45=‘p— Uss (3.9)
4

5
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Considering #45 + %54 =1, we can write formula (3.9) in the form

kT kT
<Y2Y(5)>=—p U45’745_“‘p Uasstsa
s 4

1 1
= —kTUsNas——kTUs4ns54— (3.10)
Ps P4
since Usy= —Uys, ps'Uss=U,s(ps!)"= —Usps'. Substituting (3.10)
into (3.7) gives
1 1
Ppy= kT<C13A34 UistlasAs6Cer p_+ CosAes Usattsadaz Csy p_) (3.11)
2 1

It is easy to verify that (3.11) is equal to the expression obtained by sub-
stituting (3.5) into the right-hand side of (3.6). Thus, the FDR (3.6) has
been proved. In order to prove the second linear relation-—reciprocal
relation (1.18b)—one should take into consideration the equation

CYYYS--- Yo )t =KY{YS--- Y7 (3.12)
which is  satisfied [under the time-reversibility  condition
H,(Q, —P)= H,{Q, P)] by any equilibrium moment in the quantum case
and also in the nonquantum case (see ref. 7 and also ref. 5). Equation (3.12)
implies

LYY, Y3 =<1}, Y915 (3.13)

(the quantum case). Further, we have
l- t.c. l
(F<0re 79 ) = 5 <ve e
i.e., the equation
QYL Yipte= ({1}, v3}) (3.14)

is valid in the nonquantum case. Applying Egs. (3.5) and (3.14) and the
equations 71§ =7,;, (p; )= —p; ', and 8(t; — 1,)"* = (1, — 1,), we find

1
ds;',cz' =8,C128, T8, C 383 45,(Ussnys)t Asse6Core,y <_ p_>
2
1

=Cy1 + Cy1A34(— Uys) 0154 456 C o ;‘
1

1
=Cyy + CrsAes UsatssA43Cy p_
1
-9, (3.15)

SINCE €,C,p85 = Cp, and Uys = —Us,. Equation (3.15) testifies to the validity
of relation (1.18a) in the linear approximation.

822/53/1-2-2
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4. QUADRATIC FDRs

In Eq. (2.14) let us consider the term quadratic in z. In this term, in
the quadratic approximation, we can replace v,,; by

01230 =UipaMiz+ Ussaia2

where U3 = <{{Y9, Y9}, Y9} > [Eq. (2.13) has been used ]. Transforming
this term according to (3.1) and comparing the result with the appropriate
term in (1.15), we get

D= —C 14 A45(Usgr1 567+ UszsNsos) Agg A79Cyr Cos (4.1)

Pe D

Let us write this expression in the shorter form and perform some transfor-
mations

1
Py =—CiA(Uppsnyas + U132’I132)p A;4;C,C5

23

1
= —C1C2TC3TA1A2TA3TW (Ui23Ni23 + Uysafisn)

273

=—C,CC34, 4,45 (Ui3fizs+ Uisafi32) (42)

Pa2Ps3

We now find the time-conjugate function. In so doing, we use that (3.12)
implies the formula

LYY, Y91, Y31 =<[[Y?, Y31, Y51) (4.3)
analogous with (3.13), and therefore
Uiss="Ujz (4.4)

Using the equations #5; =#1s, eCe= —C, and pt>= —p,, from (4.2) we
get

1
(ptl',cz'a = —£,C1618,C18,83C58634, 4,44 ﬁ (Ui23M321 + Ui32M231)
2P3

=CC,CyA4, 4,4, (Ui23M321 + Ui327231) (4.5)

23

Now consider the triple moment

D3=<8,8,8) = “C1C2C3A1A2A3<Y(1)Y(2)Y(3)> (4.6)
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From the formula (ref. 5, §16)

E(p, 1
YYD = - B (Lt v, )
E(Pz) 0
b B <LV, 72, YD) (47)

which is valid for equilibrium moments in the quantum case, we obtain in
the classical limit

1 1
(YOYOY9y = —(kT)? (p Uy +—— U) (4.8)

1P3 1 P2
Therefore Eq. (4.6) takes the form
1 1

1P3 1P2

(kT) 2 B3 =C,C,C34, 4,4, (p U132> (4.9)

To prove the relation
(kT) 2 @Dy =P, 53— PiSy+ Doz — D553+ Py 1, — P55, (4.10)
we substitute (4.2) and (4.5) into the right-hand side of (4.10). This gives

@1’23 + ¢2’13 + @3!12 —t.c.
= Cl C2C3A1A2A3

1 1
X[ Uias(f123 +11321) +—— Uiz2(132 +1231)
P2Ps3 P2D3

1
+ Usai(213 + 1312) +—— Usai(M231 +1132)
PiPs P1Ds
1
+ Usia(M312 + 1213) + Usp1(M321 +71123)} (4.11)
PP PLD2
Due to the property Uy,,= —U,,, of the Poisson brackets, from six

functions obtained by permutation of the subscripts of U,,;, we obtain three
independent functions, and due to the Jacobi identity

Uiz + Uz + Uz, =0 (4.12)

two independent functions remain. We take the functions appearing on the
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right-hand side of (4.9) as these independent functions. Passing to them in
Eq. (4.11) gives

D+ Dyt Dy yp—tc.
= C1C2C3A1A2A3

1 1
Xl — + (M123 +1321)
PaP3s Pi1D2

1
+—— (23 + N30+ 1231 + ’7132)] Uizs
P1DP3

1 1
+ - + (231 + M132)
[ <P2P3 p1p3> a1

1
+—— (M312 + N213 + N34 +71123):l UIEZ} (4.13)
P10

By virtue of the equation

1 1 1
+ + Jim=0 (4.14)
PiD2 P1P3s PaDs

[ which is valid in the stationary case when (p, + p, + p3) fis, = 0] and by
virtue of the obvious formula

M123 F 321 F 213+ 30+ 23 3= 1 (4.15)

the expression on the right-hand side of (4.13) coincides with the
expression on the right-hand side of (4.9), which proves the FDR {4.10).
We now pass to the other relation in (1.20), i.e., to the FDR

(kT)ﬁl ¢12,3=¢1,23+¢2,13—¢§',c1'2 (4-16)

In proving this FDR, one should take into account the distinction between
v,, and its mean value {(v,,). Regarding the difference v,,— (v,,) as a
random force ¢, from (2.14) we obtain (with appropriate accuracy) (1.15)
if we now put

§1=F1[Y°,x]

1
= _C1A1Y(1)+C1A1(Ux3—<013>)p—A3C3x3 (4.17)
3
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which is more precise than (3.4c). Substituting (4.17) into (1.22) yields

1
Dy3=—C,CyA,4,(vy3, YI) + {vys, Y?>)p—A3C3
3
l
="C1C2C3A1A2A3p_(<1}13; Y9> + (ugs, Y9)) (4.18)
3

In the equilibrium case a formula of the type (3.9) is valid for any moments
and cumulants. Therefore we have

(o, Y9 =%Z<{v,3, ¥l (4.19)

or

kT kT
{vy3, Y(2)> :’; <{{Y(1)> Yg} N1i3s Y3}>=p— Uisafis (4.20)
2

2

if we use (2.13). Due to this, Eq. (4.18) assumes the form

(kT)—l(pu,s: —C1C2C3A1A2A3< M3V +

2P3 Dy P3

Ha3 U231) (4.21)

Substituting (4.2) and (4.5) into the right-hand side of (4.16) gives
Pzt Pz — P35>
= —C,C,C34, 4,45

1 1 1
X <—‘77123 Uprs + N32Upsn + #213Uzss
P2D3 P2D3 PP

1¥3

+

1 1
’7231U231+p D ’7213U312+p ” ’7123U321> (4.22)

173 172 172

Using the above-mentioned properties of the function U,,;, in (4.22) we
perform the transformations such that the functions U5, and U,;; appear
in the right-hand side of (4.22). This gives

¢1,23 + ¢2,13 - 45‘3;“1'2
= _C1C2C3A1A2A3

1 1 1
X{l: (71123+’7132)_< + )’1213] Uiz,
Paps PiPs DPi1P>

1 1 1
+ { (M213 +M231) — ( + ) ’1123] U231} (4.23)
P1Ps3 P2Ps P1P2
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Using (4.14) and the obvious equation

N3+ W2+ H213 =113 (4.24)

we easily verify that the expression on the right-hand side of (4.23) is equal
to the expression on the right-hand side of (4.21). This proves the FDR
(4.16).

The foregoing proof may have left the impression that the linear and
quadratic FDRs are valid only when the inertial terms in (1.15) are small
(which is connected with the smallness of 4). However, this is not so, since
using the other methods of proof does not require this smallness. In ref. 5
the linear FDRs are proved by the projection operator method in phase
space. The smallness of inertial terms is not assumed in this case. Other
methods (nondynamical ones) of proving the linear and nonlinear FDRs of
the first kind are also applied in ref. 5.
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